Logspace computability and regressive machines

نویسنده

  • Stefano Mazzanti
چکیده

We consider the function class E generated by the constant functions, the projection functions, the predecessor function, the substitution operator, and the recursion on notation operator. Furthermore, we introduce regressive machines, i.e. register machines which have the division by 2 and the predecessor as basic operations. We show that E is the class of functions computable by regressive machines and that the sharply bounded functions of E coincide with the sharply bounded logspace computable functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ICTCS ’ 14 Fifteenth Italian Conference on

argumentation frameworks to promote fairness and rationality in multi-experts multi-criteria decision making Stefano Bistarelli, Martine Ceberio, Joel A. Henderson, Francesco Santini 247 Optimal placement of storage nodes in a wireless sensor network Gianlorenzo D’Angelo, Daniele Diodati, Alfredo Navarra, Cristina M. Pinotti 259 Engineering shortest-path algorithms for dynamic networks Mattia D...

متن کامل

Planarity of Knots, Register Automata and LogSpace Computability

In this paper we investigate the complexity of planarity of knot diagrams encoded by Gauss words, both in terms of recognition by automata over infinite alphabets and in terms of classical logarithmic space complexity. As the main result, we show that recognition of planarity of unsigned Gauss words can be done in deterministic logarithmic space and by deterministic register automata. We also d...

متن کامل

A Note on the Advice Complexity of Multipass Randomized Logspace

Investigating the complexity of randomized space-bounded machines that are allowed to make multiple passes over the random tape has been of recent interest. In particular, it has been shown that derandomizing such probabilistic machines yields a weak but new derandomization of probabilistic time-bounded classes. In this paper we further explore the complexity of such machines. In particular, as...

متن کامل

Unbounded Recursion and Non-size-increasing Functions

We investigate the computing power of function algebras defined by means of unbounded recursion on notation. We introduce two function algebras which contain respectively the regressive logspace computable functions and the non-size-increasing logspace computable functions. However, such algebras are unlikely to be contained in the set of logspace computable functions because this is equivalent...

متن کامل

The Canonical Ramsey Theorem and Computability Theory

Using the tools of computability theory and reverse mathematics, we study the complexity of two partition theorems, the Canonical Ramsey Theorem of Erdös and Rado, and the Regressive Function Theorem of Kanamori and McAloon. Our main aim is to analyze the complexity of the solutions to computable instances of these problems in terms of the Turing degrees and the arithmetical hierarchy. We succe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014